全球第四次工业革命正极大地改变电力能源生产和传输方式,引发了电力能源行业与物联网深度融合,使得能源互联网建设成为我国新基建的迫切需求。能源互联网是建立在传感器全面感知电网中源、网、储、荷电力设备的运行状态信号基础上的智能互联,具有状态全面感知、信息高效处理、应用便捷灵活等特征,是应对外部数字经济、互联网经济等社会经济形态变革和电网复杂程度增大等内部电网形态变革的核心举措。
随着电网形态逐渐由建设周期转向维护周期,实现能源互联网除了构建灵活、稳定、安全的能源网络,更加重要的在于电网状态量的实时测量与反馈调整,进而结合后续分析算法实现信息的智能感知和故障的智能自愈。通过先进的传感和量测技术对电力设备状态进行感知,是构建泛在能源互联网大数据资源的基础。
而传感器作为电力物联网中设备状态感知的关键元件,决定了电力系统安全运行的总体技术水平。随着电网自动化、智能化程度不断提高,电力传感器数字化、小型化、便捷化的需求日益迫切,其核心在于高性能材料的开发及其与器件的配合。
作为与设备高度融合的传感器件,压电传感器实现了机械-电信号转换,具备无源、小型化、抗干扰能力强等优势,是感知电力设备振动、放电等状态的关键器件,在压电振动传感器、超声传感器、声表面波传感器等方面得到了广泛应用。此外,还有基于物理量耦合与转换的诸如压电温度传感器、电压传感器等新型压电传感器件,将温度、电压、电流等物理信号转换为振动信号或声信号,通过对转换后的物理量进行测量反推出原信号值。
然而,受制于材料性能、器件封装、拓扑结构等,压电传感器实际运行时仍存在精确度较低、稳定性差、误判率高等显著问题,逐渐难以适应复杂的电网运行环境,亟需在新材料快速开发、新型传感器拓扑设计、传感器稳定性和寿命提升、智能化补偿等方面取得突破。
随着能源互联网的发展,对电力设备传感准确性、可靠性和稳定性等提出了越来越高的要求,压电传感技术面临着以下几方面的挑战:
(1)精确度。当前传感器件在频带宽度、灵敏度、结构体积等因素之间存在矛盾,分辨率和灵敏度仍存在不足,在复杂工况下误判率较高。
(2)稳定性。压电传感关键参数依赖压电材料极化状态,而压电材料在长期机电耦合作用下会发生老化、疲劳等导致性能降低,严重影响压电传感器件的长期运行可靠性。
(3)环境适应性。压电传感设备多运行在户外环境,关键压电材料受温度、湿度等环境因素影响较大,带来较大的量测误差,加之结构热适配、电路匹配等因素综合影响,传感器不可避免地存在温度、频率漂移等问题。
(4)环境友好。能源互联网建设中大量应用传感器件,对传感材料的环境友好性提出了更高要求。PZT等含铅材料仍是目前压电器件特别是商用传感器的主流材料,铅元素的过度使用已对环境造成了潜在威胁。尽管无铅材料压电系数已经可以同含铅材料媲美,但仍存在稳定性差、退极化等问题,难以实现实际应用。
要解决上述问题,亟需从以下几方面取得突破:
(1)新型压电材料开发。针对电网多应用场景,需要压电材料实现压电系数、居里温度和机电耦合系数等压电性能的协同提升。结合人工智能方法发展环境友好先进压电材料,增强其稳定性和环境适应性,是压电领域的发展趋势。
(2)新型压电传感器拓扑设计。针对电力设备传感应用的传感器件、材料一体化设计,实现传感材料和器件的高度配合、传感器与设备的高度融合已成为未来智能压电器件的发展趋势。亟需开发新型传感器拓扑结构,提升传感器综合性能。
(3)智能化补偿。在尽可能提升压电材料和器件压电性能和稳定性的同时,还需针对传感器的动态特性进行特定补偿(如进行动态补偿网络修正),以消除误差和环境因素影响。此外,在密集电力设备强电磁环境下实现电磁兼容也是确保压电传感器件安全稳定运行的重要因素。
本文编自2021年第7期《电工技术学报》,论文标题为压电材料与器件在电气工程领域的应用,作者为姚睿丰、王妍 等。